Changes for page 3.4.2.1 Sentinel-2 data operations
Last modified by Tuan Le on 2019/05/28 10:36
<
edited by Wai-Tim Ng
on 2019/05/24 13:52
on 2019/05/24 13:52
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.T im1 +XWiki.Tuan - Content
-
... ... @@ -16,7 +16,7 @@ 16 16 **Cloud masking** is the action of removing cloud affected pixels, usually by assiging NA values to them. Generally, the precense of clouds or shadows is unavoidable for optical remote sensing and result in missing data. Therefore, negatively affected pixels need to be bemoved, either manually or by applying fully automated setups. To do so cloud mask being produced using a wide range of algorithms, with different ranges of success in detecting clouds and shadows. 17 17 18 18 (% style="text-align:center" %) 19 -[[image: 2\. Terminology.3\.5\. Methodology.WebHome@S2_CC_SCL_crop.PNG]]19 +[[image:S2_CC_SCL_crop.PNG]] 20 20 21 21 22 22 ))) ... ... @@ -25,7 +25,7 @@ 25 25 **Gap-filling **replaces low qulatiy pixels (i.e. clouds, snow, SLC-off) with high quality data from a date near in time or growing season. Severall apporaches have been developed .... 26 26 27 27 (% style="text-align:center" %) 28 -[[image: 2\. Terminology.3\.5\. Methodology.WebHome@gapfill.JPG]]28 +[[image:gapfill.JPG]] 29 29 30 30 Vuolo, F., Ng, W., Atzberger, C., 2017. Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data. Int. J. Appl. Earth Obs. Geoinformationon 57, 202–213. 31 31 )))